If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=122
We move all terms to the left:
X^2+X-(122)=0
a = 1; b = 1; c = -122;
Δ = b2-4ac
Δ = 12-4·1·(-122)
Δ = 489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{489}}{2*1}=\frac{-1-\sqrt{489}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{489}}{2*1}=\frac{-1+\sqrt{489}}{2} $
| 8x+11=10x+25 | | -3(-4y+10)=-90 | | 23+7x=-4(2x+10) | | 5s+-7=-56 | | -2(1y+8)=-8 | | 1/5x+20=55 | | –1=b–1+ –2 | | 8m+3+4m=2(6m+1) | | 2(2x-9)=x+3x-9 | | 42-x=36 | | -p^2=-16p+28 | | 15x+55=90 | | 90x+114=180 | | 5x-8=-2x-1 | | 2x(3x+8)+(3x-4)=180 | | -8*x-5=35 | | 7p=9=40.5 | | 15a+1=8a.13 | | −4h+7=31 | | x2-41x+210=0 | | 5x+7x+9+27=180 | | 11٪3=y٪3-9 | | 2(3x+10)=-3x+12+8x | | 90+28+6z-4=180 | | 4x^2-1=31 | | 7.8b+2.14=42.7 | | 2x+4=7+8 | | 5k+15=10 | | 5(7x+20)+20=-8+19x | | 6x-9=10x-5 | | -3(7x+8)=165 | | c/7+58=66 |